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Abstract - K-Nearest Neighbor (KNN) is a widely used
method for both classification and regression cases. This
algorithm, known for its simplicity and effectiveness, relies
primarily on the Euclidean formula for distance metrics.
Therefore, this study aimed to develop a voting model
where observations were made using different distance
calculation formulas. The nearest neighbors algorithm was
divided based on differences in distance measurements,
with each resulting model contributing a vote to determine
the final class. Consequently, three methods were
proposed, namely k-nearest neighbors (KNN), Local
Mean-based KNN, and Distance-Weighted neighbor
(DWKNN), with an inclusion of a voting scheme. The
robustness of these models was tested using umbilical cord
data characterized by imbalance and small dataset size.
The results showed that the proposed voting model for
nearest neighbors consistently improved performance by
an average of 1-2% across accuracy, precision, recall, and
F1 score when compared to the conventional non-voting
method.

Keywords: KNN, Euclidean, Manhattan, Minowski,
Voting

I. INTRODUCTION

K-Nearest Neighbor (KNN) is a distance-based
classification method whose operation includes
identifying the nearest neighbors of the test data within
the range of the training data. This proximity can be
measured using a distance function, with Euclidean
distance serving as the most prevalent choice. KNN has
several advantages, including its simplicity, ease of
explanation, and adaptability to irregular feature spaces.
Over time, it has been subject to various modifications
for performance improvement. However, the method has
garnered attention in previous liter: due to four
problematic issues. Firstly, it is sensitive to the
neighborhood size parameter k [ 1]-[3]. The performance
can deteriorate when outliers are present, whether k is set
to a smaller or larger value. A selection of small k
parameter often results in suboptimal classification

outcomes, particularly in discrete and noisy datasets.
Conversely, the selection of a large k parameter can lead
to compromised clafdfication outcomes, due to the
influence of outliers. Secondly, KNN is sensitive to the
distance function used for selecting k nearest neighlas
[4]-[6]. Thirdly, the method can be highly complex due
to the search of nearest neighbor (NN) [7]-[9]. This
aspect profatles a significant challenge as KNN is
required to calculate the distances of all samples in order
to identify the k nearest neighbors for each given query
(test data).

The development of the nearest neighbors method has
been widely carried out, with a focus on addressing the
three identified weaknesses. Several studies aimed at
improving the method have been previously proposed,
particularly in addressing the sensitivity issue. One
approach used incorporates a local mean factor to reduce
the sensitivity effect of the k value. Various methods,
such as k-harmonic nearest neighbors (KHNN)[10],
local mean-based KNN (LMKNN)[11], local mean-
based pseudo-NN (LPMNN)[12], and multi-local
means-based NN (MLNN)[13]. have been developed to
reduce the impact of outliers around the sample points.
Some other methods, such as pseudo nearest neighbors
(PNN) [14], weighted representation-based KNN
(WRKNN), and weighted local mean representation-
based KNN (WLMRKNN) [15], introduced weights for
each neighborhood data point. These weighting methods
are based on the premise that each nearest neighbor
contributes differently to the classification outcome. The
development of the dual distance-weight technique has
led to the introduction of the distance-weighted k-nearest
neighbor rule (DWKNN) [16]. The new method reduces
the weight of each nearest neighbor, except the first
closest and the k-th. Several alternative neighborhood
methods have been successively applied to classification
problems in order to address practical issues in KNN. For
instance, the surrounding neighborhood-nearest centroid
neighbor (NCN) was derived for finite sample-size
situations, with extensions like KNCN [17] and
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LMEKNCN [18] exhibiting satisfactory performance. The
second key concern is the selection of a suitable distance
metric for evaluating the distance between query and
training samples, a crucial factor in classification
decisions. To enhance the classification performance of
KNN, several local and global feature weighting-based
distance metrics methods have been developed [19],
[20]. However, these approaches often overlook the
correlations between all training samples, signifying the
importance of accurately defining a distance metric for
KNN classification. Based on the fuzzy sets theory,
fuzzy nearest neighbor classifiers that introduce
fuzziness into KNN were proposed in [21]-{23]. Some
evidence-theoretic KNN classifiers have also been
explored [24], [25] from the perspective of Dempster—
Shafer theory. Derrac et al. recently conducted a
comprehensive review of the most relevant algorithms
for fuzzy nearest neighbor classification [26]. In contrast
to using all training samples in some of the algorithms,
several prototype-based classifiers have emerged. These
approaches, including the selection [27]-[29], generation
[30], [31] and optimization [32]-[34] of prototype,
leverage a few well-represented prototypes to achieve
optimal classification performance, improving speed,
storage, and accuracy. Based on the extensive literature
on KNN development, the current study aimed to
analyze the impact of different distance metric
formulations, such as Euclidean, Minowski, and
Manhattan distances. The proposed model adopted a
voting scheme to these three distinct distance metrics,
and was subsequently applied to the original KNN
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method, LMKNN, and DWKNN. The effect of the
model was evaluated using umbilical cord data. The
main contribution of this research is applying voting
techniques to the three methods above using different
distance metric methods. Voting is carried out with the
same weight between one metric and another.

II. METHOD

A. Voting Scheme for Nearest Neighbors

The proposed method in this study utilized voting
calculations to determine the final class for the test data.
The final prediction result of this model was determined
by the highest number of votes received. A total of 12
models were analyzed for their performance, based on
the differences in distance metric measurements,
specifically Euclidean, Manhattan, and Minowski. The
classifier algorithm used was the KNN method, along
with its state-of-the-art developments, namely LMKNN
and DWKNN. Fig. | shows the proposed model scheme
based on the voting method.

B. Local Mean Based k-Nearest Neighbors (LMKNN)

Local Mean K-Nearest Neighbor (LMKNN)
Classification extended the K-Nearest Neighbor
algorithm and was specifically designed to address the
sensitivity of KNN to outliers, specifically when training
sample sizes are small. The basic concept behind the
development of LMKNN is presented as follows:

l. Identification of the KNN for each class
corresponding to the query sample.

Data test

A 4 A 4

| KNN LMKNN DWEKNN
Euclidean Manhattan][ Minowski J [ Euclidean [Manhattan] [ Minowski [Euclidean Manhattan [ Minowski ]

I 1 l 1

} 1 ! |

Voting

Final Class Prediction

Fig. 1 Proposed voting scheme for Nearest Neighbors
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2. Calculation of the local mean in the KNN for each
class.

3. Calculation of the distances between the query sample
and the local mean of each class.

4. Classification of the query sample into minimum local
mean distance.

LMKNN was designed to mitigate the challenges of
outliers and enhance KNN performance. By calculating
the local mean for each class, LMKNN aimed to
effectively capture the underlying data structure,
particularly in cases of small training samples or in the
presence of outliers.

Insummary, it was a classification method that leveraged
the local mean of nearest neighbors to classify query
samples and effectively address outlier issues in KNN as
in (1).

my; =Ty (1)
Where TS ={pi € Rd}iil is the training samples from a
d-dimensional feature space, with N as the total number
of samples,and ci € {c1,c2,..., cm} indicates the class
label for pi, with a total of M classes. TR={pij € Rd}ﬂl
represents the subset of TS corresponding to class ci,
with Ni training samples. LMKNN follows these steps to
classify the query sample x € Rd into aclass c:

Step 1. Identify the KNN TR set for each class ci for the
query pattern x.

Where TREN (x) = {pﬁ” € IR?.‘E}?:l is the set of
KNN for x in class ci using the Euclidean
distance metric (x,pﬁ”) , where k < Ni as in

Step 2. Calculate the local mean vector Im}N for class
ci, using set TRM (x) as in (3).

1
mi = 3 plfY (3)

Step 3. Assign x to class ¢ when the mean distance
between the local mean vector for ¢ and the
query sample falls within the minimum
Euclidean space using (4).

¢ = argmindi(x, InN") 4)

LMKNN is equivalent to the 1-NN classifier when
k = 1. The significance of K differed between KNN
and LMKNN. KNN selected the K nearest neighbors
from the entire training sample set, while LMKNN
utilized the local mean vectors of K nearest neighbors
within each class. LMKNN aimed to identify the class
with the locally closest region to the query sample,
effectively mitigating the negative impact of outliers,
particularly in small sample sizes.

C. Distance-Weighted k-Nearest Neighbors (DWKNN)

DWKNN, an extension of KNN, was designed in
order to reduce the sensitivity to the neighborhood size
parameter k and achieve good pattern classification
performance. Let T = {(x}", y} N)}i_(_l
nearest neighbors to the query X sorted in ascending
order of their distances d (JZ, xiN N) between X and JEL-N N,
and W = {47,..... , W} being the corresponding set
of dual weights. DWKNN built upon WKNN by
assigning different weights to the k-nearest neighbors
based on their distances, with a higher weight given to
the nearest neighbors. It also assigned dual weights to the

set of k -

(2). i-th nearest neighbor x' ¥ of the query ¥ a dual weight
4tr;, which were determined by a dual distance-weighted
d(x,pﬁ”) = (X-PﬁN)T(x- pﬁ”) (2) function as in (5). The classification of the queryx was
determined through a majority weighted vote from the k
nearest neighbors, as described by (6).

d(z)-d (2N a @ Mra(ea) Lifd (Za V) = d @A)
w; = [d (Zxf V) —d (22 ) d (% M+ d (xa'V) (5)

1 Jifd (% V) = d (&N

y = argmax z i x 5(v = yNN

y (xf“”,yf"”) e TWi (J’ Yi ) (6)
The dual weight calculation considered two s, as shown in Eq. (5), were generally smaller than the

components: the first part was similar to the weight in
WEKNN, while the second represented a newly
determined weight, both based on the fundamental idea
of the distance weighting scheme. The dual weights 4it;

weights computed in WKNN, except for the first and k -
th nearest neighbors. Consequently, the corresponding
neighbors x¥ " had a smaller influence on the query
classification outcome. Dual weights decreased rapidly
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from 1 at the first nearest neighbor distance to 0 at the
farthest k-th nearest neighbor distance.

III. RESULT AND DISCUSSION

A. Dataset Description

The umbilical cord, also known as the navel string, is
a connecting tissue or channel establishing a link
between the placenta and fetus. It serves as a lifeline,
fulfilling several crucial roles, including maintaining the
viability and growth of fetus, eliminating waste
compounds, and transporting essential elements such as
oxygen, nutrients, and antibodies. These factors
collectively contribute to the optimal development of
fetus in the womb.

The umbilical cord dataset comprised 19 distinct
features and three classes, namely normal, hypercoiling,
and hypocoiling. The dataset exhibited an imbalanced
ratio (IR) of 6.3%, with a total of 63 data points, as
shown in Table I. The testing phase was performed using
a training data split of 70% and a testing data split of
30%.

B. Performance Metrics

The performance of the classification model was
assessed using three metrics, including accuracy,
precision, recall, and F-Measure. In machine learning
classification tasks, these metrics were derived from the
confusion matrix parameters, namely True Positive (TP),
True Negative (TN), False Positive (FP), and False
Negative (FN). These parameters served as the basis for
computing other performance metrics such as Precision,
Recall, and F1 scores. Accuracy measures the amount of
correctly classified data points relative to the ground-
truth label divided by the total data used for testing.
Precision is the rate of accurate predictions among all
samples predicted to belong to the minority class, and it
indicates the number of accurate positive predictions.
Also, recall reflects the proportion of minority class
samples labeled as positive. Table II shows the formulas
for measuring accuracy, precision, recall, and F-
Measure.

TABLET
DESCRIPTIVE INFORMATION OF THE DATASET
Majority Minority Positive Negative
Percentage Percentage Class  Class
6.3% 93.7% 59 4

Class Attribute
3 19

TABLE II
PERFORMANCE METRICS
No Metrics Expression
1 Accuracy TP +TN
TP+TN + FP +FN
2 Precision TP
TP + FP
3 Recall TP
TP +FN
4 F-Measure Fg
1

1 1
B x precision +(1-B) X rean

The F-measure parameter represented the harmonic
mean of precision and recall. It was governed by the
value of f, ranging from O to 1. A higher f value
indicated that the testing model prioritized the results of
precision and vice versa.

C. Performance Analysis

The testing phase included the assessment of KNN,
LMKNN, and DWKNN, utilizing three different
distance metrics, namely Euclidean, Minowski, and
Manhattan. In the first testing phase, the KNN method
was evaluated with varying values of k (k =1, 3,5,7,9).
Table III shows the testing results for the KNN voting
algorithm.

The results showed that the KNN voting model
attained its highest accuracy of 98.37% when k = 3,
surpassing the conventional KNN method for Minowski,
Manhattan, and Euclidean distances. In terms of
precision performance, the KNN voting method also
demonstrated highest achievement of 98.49% at k = 1
and 3. In the case of recall, all four models achieved the
highest value of 98.34%. Similarly, in the F1 score, all
four models attained a maximum result of 98.33%. The
second testing phase continued with the DWKNN voting
model, while DWKNN (Euclidean), DWEKNN
(Manhattan), DWKNN (Minowski), and DWKNN
(Voting all) models were subsequently analyzed for
optimal performance. Table IV shows the results of the
second testing phase.

168 Voting Scheme Nearest ... | Pradipta, G.A., et.al., 165— 174




JUITA: Jurnal Informatika e-ISSN: 2579-8901; Vol. 11, No. 2, November 2023

TABLE 111
RESULTS OF ACCURACY, PRECISION, RECALL, AND F1-MEASURE MEASUREMENTS
FOR KNN VOTING MODEL

Metrics Number of Euclidean Manhattan Minkowski Voting
k (KNN) (KNN) KNN KNN
Accuracy 1 0982301 0.982301 0983776 0.982301
3 0.982301 0.983776 0.980826 0983776
5 0983776 0.980826 0976401 0982301
7 0.976401 0.977876 0.973451 0976401
9 0.973451 0.970501 0.973451 0973451
Precision 1 0.98261 0.98261 0983993 0984449
3 0.982933 0.984449 0.981432 0984449
5 0.984449 0.981559 0976914 0983145
7 0976914 0.97843 0.973798 0976914
9 0974121 097118 0.974029 0974121
Recall 1 0.98212 098212 0.983498 0.98212
3 0.981858 0.983367 0.98035 0.983367
5 0983367 0.980308 0.975741 0981858
7 0975741 0.977207 0.972682 0975741
9 0.972556 0.969539 0.972598 0972556
F1_Score 1 0982275 0.982275 0983623 0982275
3 0.982139 0.983693 0.980585 0.983693
5 0.983693 0.980705 0976061 0982234
7 0.976061 0.977647 0.972975 0976061
9 0973157 0.970137 0973128 0973157

In the second testing phase. the DWKNN voting
algorithm demonstrated performance relatively similar
to the DWKNN algorithm with Manhattan distance. The
highest accuracy was achieved at 98.52% for k = 2, a
result matched by DWKNN Manhattan at k = 5 and 7,
also achieving a 98.52% accuracy rate. In terms of
precision performance, the highest values were nearly
identical for DWKNN Manhattan and DWKNN voting,
both reaching 98.57 at k = 3. The recall values reached
their peak at 98.48% fork =3, 5, and 7. For the FI score,
DWKNN (Euclidean), DWKNN (Manhattan), and
DWEKNN (Voting all) all attained the same peak value of
98.36%. The third testing phase proceeded with a
comparison of the performance results for Voting
LMKNN, LMKNN (Euclidean), LMKNN (Manhattan),
and LMKNN (Minowski) methods. Table V presents the
results of the third testing phase

In the third test, the DWKNN voting algorithm
consistently outperformed the other three methods. It
achieved the highest accuracy of 98.86% at k = 5, the

highest precision of 98.70% at k = 5, the peak recall at
98.80% with k = 3, and the highest F1 score of 98.63%
at k = 5. The tests showed that the proposed nearest
neighbors voting algorithm could enhance performance.
While the performance improvement might not be highly
significant, the inclusion of voting enhanced the ability
of the algorithm to identify a decision boundary,
particularly in imbalanced data conditions. The average
performance improvement in terms of accuracy,
precision, recall, and F1 score fell within the range of 1-
2%. The incorporation of voting, based on ditferent
distance measurements in the nearest neighbors
algorithm. broadened the scope for methods to make
final class decisions for test data. Fig. 2 until 5 show a
plot graph of the performance of the nearest neighbors
voting model. The figure shows a comparison of the
performance of the KNN, LMKNN, and DWKNN
methods and the proposed method with parameters of
different k values.
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TABLE IV

RESULTS OF ACCURACY, PRECISION, RECALL, AND FI-MEASURE MEASUREMENTS
FOR LMKNN VOTING MODEL

170

Recall

Metrics Number of Eclidean Manhattan Minkowski Voting
k (DWKNN) (DWKNN) (DWKNN) DWKNN
Accuracy 1 0982301 0.982301 0983776 0982301
3 0985251 0.985251 0982301 0985251
5 0982301 0.985251 0977876 0982301
7 0980826 0.985251 0977876 0980826
9 0980826 0.983776 0979351 0980826
Precision 1 0.98261 0.98261 0.983993 0.98261
3 0985762 0.985762 0982745 0985762
5 0982933 0.985762 0.97864 0982933
7 0981432 0.985978 0.97864 0981432
9 0981852 0.984413 0.980337 0981852
Recall 1 0.98212 098212 0983498 0.98212
3 0984875 0.984875 0.981858 0984875
5 0981858 0.984875 0977333 0981858
7 0.98035 0.984875 0977333 0.98035
9 0.98035 0.983325 0.978842 0.98035
F1_Score 1 0982275 0.982275 0983623 0982275
3 0982139 0.983693 0.980585 0983693
5 0983693 0.980705 0976061 0982234
7 0976061 0.977647 0972975 0976061
9 0973157 0.970137 0973128 0973157
0.9875 ) =
SN N

0.9850

0.9825

0.9800

09775

tett

0.9750

0.9725

tottd

0.9700

Euclidean recall (Knn)
Manhattan recall (Knn)
Minkowski recall (Knn)
Voting recall {Knn)
Euclidean recall (DwKnn)
Manhattan recall (DwKnn)
Minkowski recall (Dwknn)
Voting recall (Dwknn)
Euclidean recall (LmKnn)
Manhattan recall (LmKnn)
Minkowski recall (LmKnn)
Voting recall (LmKnn)

All voting recall

(v

2

5
K Value

Fig. 2 Plot recall performance of proposed method in umbilical cord dataset
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TABLE V
RESULTS OF ACCURACY, PRECISION, RECALL, AND FI-MEASURE MEASUREMENTS FOR DWKNN VOTING
MODEL.
Metrics Number of Eclidean Manhattan Minkowski Voting
k (LMKNN) (LMKNN) (LMKNN) LMKNN
Accuracy 1 0.982301 0.982301 0983776 0982301
3 0988201 0.985251 0.986726 0988201
5 0986726 0.985251 0.980826 0986726
7 0979351 0.982301 0977876 0979351
9 0973451 0.977876 0971976 0973451
Precision 1 0.98261 0.98261 0983993 0.98261
3 0988221 0.985516 0.986699 0988221
5 0987086 0.985978 0978038 0987086
7 0979565 0.982853 0978038 0979565
9 0973729 0.978429 0972177 0973729
Recall 1 0.98212 098212 0.983498 0.98212
3 0988022 0.985006 0986514 0988022
5 0986383 0.984875 0980481 0986383
7 0979104 0.981989 0977464 0979104
9 0973117 0.977422 0971609 0973117
F1_Score 1 0.98212 098212 0983498 0.98212
3 0988022 0.985006 0986514 0988022
5 0986383 0.984875 0980481 0986383
7 0979104 0.981989 0977464 0979104
9 0973117 0.977422 0971609 0973117
0.9875 P ; 7 )
0.9850 -.f’—_?/:;;.-—-"' H::“E » ‘“\\
0.9825 £

0.9800 | —s— Euclidean Accuracy (Knn)
2 —a— Manhattan Accuracy (Knn)
t —8— Minkowski Accuracy (Knn)
0.9775 { —®— Voting Accuracy (Knn)
Euclidean Accuracy (Dwknn)
Manhattan Accuracy (DwKnn)
0.9750 { —®= Minkowski Accuracy (DwKnn)
—8— Vating Accuracy (DwKnn)
—8— Euclidean Accuracy (LmKnn)
0.9725 Manhattan Accuracy (Lmknn)
—#— Minkowski Accuracy {LmKnn)

e~ Voting Accuracy (Lmknn)

All voting Accuracy

0.9700

1 2 3

K Value

Fig. 3 Plot accuracy performance of proposed method in umbilical cord dataset
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0.9875
0.9850
0.9825 4
g 0.9800 1 _g— Euclidean f1_score (Knn)
2 —8— Manhattan f1_score (Knn)
=] —8— Minkowski f1_score (Knn)
0.9775 1 —e~ voting f1_score (Knn)
Euchdean f1_score (Dwknn)
Manhattan f1_score (Dwknn)
0.9750 1 —e— Minkowski f1_score (Dwknn)
—a— Voting f1_score (DwkKnn)
—8— Euclidean f1_score (LmKnn)
0.9725 Manhattan f1_score (LmKnn}
—a— Minkowski f1_score (LmKnn)
& Voting f1_score (LmKnn)
0.9700 - All voting f1_score
1 2 3 4 3 L] 7 8 9
K Value
Fig. 4 Plot F1-score performance of proposed method in umbilical cord dataset
0.9875 / TTTe—
- 8,
—
0.9850 4
=
0.9825
—
§ 0.9800 | —#— Euclidean precision (Knn) —
v —e— Manhattan precision (Knn)
E —a— Minkowski precision (Knn)
—e— Voting precision (Knn)
0.9775 Euclidean Precision {DwkKnn)
Manhattan Precision (Dwknn)
—&— Minkowski Precision (Dwknn)
0.9750 1 —e— Voting Precision (DwKnn)
=&— Eucldean Precision (LmKnn)
-— .
Manhattan Precision (LmKnn)
0.9725 1 —®— Minkowski Precision (LmKnn) \.
#— Voting Precision (LmKnn)
All voting Precision

2 3 4

=

5 (-] T L] -
K Value

Fig. 5 Plot precision performance of proposed method in umbilical cord dataset

IV. CONCLUSION

In conclusion, this study developed a novel approach
to enhance the KNN algorithm by incorporating
distance-based metrics and implementing a voting
scheme. The algorithms tested with the inclusion of
voting based on distance metrics included KNN,
LMKNN, and DWKNN. The evaluation was carried out
on the umbilical cord dataset, characterized by its limited
data volume and class imbalance. This was achieved
using a 70:30 split for mechanism for training and testing
data, with varying k-values for observations. The
experimental results showed that the proposed method of
nearest neighbors voting yielded an improvement of

2

approximately 1% to Z%Eterms of accuracy, precision,
recall, and F1 score when compared to the non-voting
approach. The integration of voting based on diverse
distance measurements within the nearest neighbors
algorithm provided a broader perspective for refining the
process of making final class decisions from test data.
For future developments, this study could consider
addressing the relatively high computational time
associated with the proposed method. The increased
computational demands were a result of the various
distance metric calculations and the inclusion of voting
steps performed by the model for each test data point.
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